If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+15x-33=0
a = 1; b = 15; c = -33;
Δ = b2-4ac
Δ = 152-4·1·(-33)
Δ = 357
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{357}}{2*1}=\frac{-15-\sqrt{357}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{357}}{2*1}=\frac{-15+\sqrt{357}}{2} $
| 4(2x-5x+4x)=219+3x | | 3p−6=2p | | 5a-4=4a+15 | | s+32=60.75 | | 7q-46-3q+6=180 | | 223=62-u | | 2x+7=-3x-9 | | 18=6(x-2) | | −9=−6x−3x | | 3.5x=3(4+5x) | | -3x-5(-x-3)=32 | | 1/5n=19 | | 180=(11x-11)+(10x+2) | | 10m+5(10m-2)=2(25m+20) | | 6-5=5(x-3)+x | | 14–n/6=5/2 | | 10y+8=-72 | | x^2+11x+15=−3 | | 10y+8=72 | | 1=2-u | | 12=-3t-3 | | 3(8y-4)-6y=-3(-6y-4) | | 3(x+2)+2x+3=19 | | (4x-12)=(2x+10) | | -5=8+c/6 | | 3x+12=3x-9+x | | 2/5c=14.6 | | 4x+-4=3x+1 | | 5n+6-10n=-(5n-6) | | -9b=-9(4) | | 35-45÷9x5= | | 6x+7-8x-5=-14 |